Opiniones de Magnitud adimensional

Aquí tienes una lista de opiniones sobre Magnitud adimensional y puedes dar tu opinión sobre el tema.
Verás opiniones de la gente sobre Magnitud adimensional y descubrirás que dicen los demás respecto a Magnitud adimensional.
También podrás ver opiniones de de otros terminos. No olvides dejar tu opinión sobre este tema y los que están relacionados.



En ciencias, una magnitud adimensional o magnitud de dimensión uno es una cantidad sin una dimensión física asociada, siendo por tanto un número puro que permite describir una característica física sin dimensión ni unidad de expresión explícita, y que como tal, siempre tiene una dimensión de 1.​ Las magnitudes adimensionales son ampliamente utilizadas en matemáticas, física, ingeniería o economía, y en la vida cotidiana (por ejemplo, en el conteo). Muchos números bien conocidos, como π, e y φ, son también adimensionales. Por el contrario, las magnitudes no adimensionales se miden en unidades de longitud, área, tiempo, etc.

Las magnitudes adimensionales se definen a menudo como productos, razones o relaciones de cantidades que si tienen dimensiones, pero cuyas dimensiones se cancelan cuando su potencias se multiplican. Este es el caso, por ejemplo, de la deformación relativa, una medida de la deformación que se define como el cambio en la longitud en relación a la longitud inicial: ya que ambas cantidades tienen dimensiones L (longitud), el resultado es una magnitud adimensional.

El análisis dimensional se utiliza para definir las cantidades adimensionales. La unidad del SI derivada asociada es el número 1.​ El Comité Internacional de Pesas y Medidas contempló la definición de la unidad 1 como el 'uno', pero la idea fue abandonada.​​​

Las magnitudes adimensionales están involucrados particularmente en la mecánica de fluidos y en la descripción de fenómenos de transporte, moleculares y convectivos, ya que utilizan la similitud de modelos reducidos o teoría de las maquetas y construye la interpretación de los resultados de ensayos. Se llaman números adimensionales, números sin dimensión o incluso de números característicos.

  1. «1.8 (1.6) quantity of dimension one dimensionless quantity». International vocabulary of metrology — Basic and general concepts and associated terms (VIM). ISO. 2008. Consultado el 22 de marzo de 2011. 
  2. Site du Bureau international des mesures.
  3. «BIPM Consultative Committee for Units (CCU), 15th Meeting» (PDF). 17–18 April 2003. Archivado desde el original el 30 de noviembre de 2006. Consultado el 22 de enero de 2010. 
  4. «BIPM Consultative Committee for Units (CCU), 16th Meeting» (PDF). Archivado desde el original el 30 de noviembre de 2006. Consultado el 22 de enero de 2010. 
  5. Dybkaer, René (2004). «An ontology on property for physical, chemical, and biological systems». APMIS Suppl. (117): 1-210. PMID 15588029. 

En la imagen de abajo, puedes ver en una gráfica la evolución de las veces en las que la gente busca sobre Magnitud adimensional y un poco más abajo cuantas noticias se crean sobre Magnitud adimensional en los ultimos años.
Gracias a este gráfica, podemos ver el interés que tiene Magnitud adimensional y su popularidad hasta el dia de hoy.

¿Qué opinas sobre Magnitud adimensional?

Desde aquí puedes dejar tu opinión sobre Magnitud adimensional, también leer los comentarios y opiniones de las demás personas sobre este tema.
Es importante que todos dejemos nuestras opiniones sobre Magnitud adimensional para conocer esto mejor: